CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism.
نویسندگان
چکیده
DFT+U calculations of CO oxidation by Au12 nanoclusters supported on a stepped-CeO2(111) surface show that lattice oxygen at the step edge oxidizes CO bound to Au NCs by the Mars-van Krevelen (M-vK) mechanism. We found that CO2 desorption determines the rate of CO oxidation, and the vacancy formation energy is a reactivity descriptor for CO oxidation. Our results suggest that the M-vK mechanism contributes significantly to CO oxidation activity at Au particles supported on the nano- or meso-structured CeO2 found in industrial catalysts.
منابع مشابه
CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters.
DFT+U calculations of CO oxidation by Au13 nanoclusters (NCs) supported on either CeO2 or doped (X-Ce)O2 (X = Au, Pt, Pd, Ti, Ru, Zr) show that doping the CeO2 support accelerates CO oxidation by the Mars-van Krevelen mechanism at the Au-(X-Ce)O2 interface. We find that Au, Pd, Pt, and Ti dopants significantly lower the vacancy formation energy of the CeO2 support and that electron donation fro...
متن کاملCO Oxidation at the Au − Cu Interface of Bimetallic Nanoclusters
DFT+U calculations of the structure of CeO2(111)-supported Aubased bimetallic nanoclusters (NCs) show that a strong support−metal interaction induces a preferential segregation of the more reactive element to the NC−CeO2 perimeter, generating an interface with the Au component. We studied several Au -based bimetallic NCs (Au-X, X: Ag, Cu, Pd, Pt, Rh, and Ru) and found that (Au− Cu)/CeO2 is opti...
متن کاملComputational Design of a CeO2‐Supported Pd-Based Bimetallic Nanorod for CO Oxidation
Engineering a bimetallic system with complementary chemical properties can be an effective way of tuning catalytic activity. In this work, CO oxidation on CeO2(111)supported Pd-based bimetallic nanorods was investigated using density functional theory calculations corrected by on-site Coulomb interactions. We studied a series of CeO2(111)supported Pd-based bimetallic nanorods (Pd−X, where X = A...
متن کاملExperimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides
In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...
متن کاملStudy of HMS Modified ZrO2 Supported Platinum Catalysts for Toluene Removal: Catalytic Combustion and Kinetics Study
Reaction behaviors and kinetics of catalytic oxidation of toluene with different feed flows over Pt/Zr(x)-HMS catalysts with Si/Zr ratio equal to 5, 10, 20 and 35 were investigated over a wide temperature range (200 – 500 oC). Results show that Pt/Zr(x)-HMS performs more easily toluene oxidation. The kinetic data were fitted by the Power-law and Mars–van Krevelen kinetic models. The fitting res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2013